Undersampling for the Training of Feedback Neural Networks on Large Sequences; Application to the Modeling of an Induction Machine

نویسنده

  • L. Constant
چکیده

This paper proposes an economic method for the nonlinear modeling of dynamic processes using feedback neural networks, by undersampling the training sequences. The undersampling (i) allows a better exploration of the operating range of the process for a given size of the training sequences, and (ii) it speeds up the training of the feedback networks. This method is successfully applied to the training of a neural model of the electromagnetic part of an induction machine, whose sampling period must be small enough to take fast variations of the input voltage into account, i.e. smaller than 1 μs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of multilayer perceptron neural network and support vector machine for modeling the hydrodynamic behavior of permeable breakwaters with porous core

In this research, the application of multilayer perceptron (MLP) neural networks and support vector machine (SVM) for modeling the hydrodynamic behavior of Permeable Breakwaters with Porous Core has been investigated. For this purpose, experimental data have been used on the physical model to relate the reflection and transition coefficients of incident waves as the output parameters to the wid...

متن کامل

Sensorless Speed Control of Double Star Induction Machine With Five Level DTC Exploiting Neural Network and Extended Kalman Filter

This article presents a sensorless five level DTC control based on neural networks using Extended Kalman Filter (EKF) applied to Double Star Induction Machine (DSIM). The application of the DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some drawbacks such as the uncontrolled of the switching frequency and the strong ripple t...

متن کامل

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

Application of SVC on Large Synchronous Motors Based on LOC Design (RESEARCH NOTE)

This paper describes the application of static var compensators, (SVC) on an electrical distribution network containing two large synchronous motors, one of which is excited via a three-phase thyristor bridge rectifier. The second machine is excited via a diode bridge rectifier. Based on linear optimization control (LOC), the measurable feedback signals are applied to the control system loops o...

متن کامل

Studies with a Generalized Neuron Based PSS on a Multi-Machine Power System

An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007